Precise integration for the time-dependent Schrödinger equation

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiresolution scheme for Time-Dependent Schrödinger Equation

Article history: Received 3 November 2009 Accepted 21 November 2009 Available online xxxx

متن کامل

Numerical solution for one-dimensional independent of time Schrödinger Equation

In this paper, one of the numerical solution method of one- particle, one dimensional timeindependentSchrodinger equation are presented that allows one to obtain accurate bound state eigenvalues and functions for an arbitrary potential energy function V(x).For each case, we draw eigen functions versus the related reduced variable for the correspondingenergies. The paper ended with a comparison ...

متن کامل

Mathematical modeling : control of the Time Dependent Schrödinger Equation

81Q05 Synonyms or related entries control of quantum dynamics by electromagnetic radiation; laser control of chemical reactions; control of spin systems; control in Nuclear Magnetic Resonance; construction of logic gates for quantum computers Definition Quantum control is the control, at the quantum level, of the state or dynamical evolution of some quantum system by means of electromagnetic ra...

متن کامل

Solution of the Time-dependent Schrödinger Equation Using Interpolating Wavelets

An adaptive numerical method for solution of the time-dependent Schrödinger equation is presented. By using an interpolating wavelet transform the number of used points can be reduced, constructing an adaptive sparse point representation. Two di erent discretisation approaches are studied in 1D ; one point-based and one based on equidistant blocks. Due to the nature of the wavelet transform a s...

متن کامل

Accurate numerical solutions of the time-dependent Schrödinger equation.

We present a generalization of the often-used Crank-Nicolson (CN) method of obtaining numerical solutions of the time-dependent Schrödinger equation. The generalization yields numerical solutions accurate to order (Deltax)2r-1 in space and (Deltat)2M in time for any positive integers r and M, while CN employ r=M=1. We note dramatic improvement in the attainable precision (circa ten or greater o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Physics: Conference Series

سال: 2008

ISSN: 1742-6596

DOI: 10.1088/1742-6596/96/1/012157